home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
ADA Programming Guide
/
ADA Programming Guide.iso
/
ada_gwu
/
9.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-01-30
|
18KB
|
637 lines
/*
* Copyright (C) 1985-1992 New York University
*
* This file is part of the Ada/Ed-C system. See the Ada/Ed README file for
* warranty (none) and distribution info and also the GNU General Public
* License for more details.
*/
#include "hdr.h"
#include "vars.h"
#include "setp.h"
#include "errmsgp.h"
#include "miscp.h"
#include "smiscp.h"
#include "nodesp.h"
#include "dclmapp.h"
#include "chapp.h"
void task_spec(Node task_node) /*;task_spec*/
{
Node entries_node, id_node;
int anon;
Symbol task_type_name, t_name, old_kind, entry_sym;
char *id;
Declaredmap entry_list;
Fordeclared fd1;
if (cdebug2 > 3) TO_ERRFILE("AT PROC : task_spec");
id_node = N_AST1(task_node);
entries_node = N_AST2(task_node);
#ifdef TBSN
/* ignore opt_specs_node for now, as N_AST3 used for N_TYPE
* DS 9-22-86
*/
opt_specs_node = N_AST3(task_node);
#endif
/*
* If this is a task declaration, an anonymous task type is introduced
* for it. Entry declarations are always attached to the task type.
* TBSL : processing of specifications.
*/
anon = (N_KIND(task_node) == as_task_spec);
id = N_VAL(id_node);
if (anon)
task_type_name =
find_new(strjoin(strjoin("task_type:", id), newat_str()));
else
task_type_name = find_type_name(id_node);
if (task_type_name == symbol_any) return; /* Illegal redeclaration. */
if (anon) {
#ifdef TBSN
XREF lessf:= task_type_name;
#endif
}
old_kind = TYPE_OF(task_type_name); /* may have been private */
NATURE(task_type_name) = na_task_type_spec;
TYPE_OF(task_type_name) = task_type_name;
SIGNATURE(task_type_name) = tup_new(0); /* created by the expander */
root_type(task_type_name) = task_type_name;
initialize_representation_info(task_type_name, TAG_TASK);
/* priv_types is {private, limited_private}; first arg to check_priv_decl
* is one of MISC_TYPE_ATTRIBUTES ...
*/
if (old_kind == symbol_private)
check_priv_decl(TA_PRIVATE, task_type_name);
else if (old_kind == symbol_limited_private)
check_priv_decl(TA_LIMITED_PRIVATE, task_type_name);
if (anon) {
t_name = find_new(id);
NATURE(t_name) = na_task_obj_spec;
TYPE_OF(t_name) = task_type_name;
SIGNATURE(t_name) = (Tuple) 0;
N_UNQ(task_node) = t_name;
}
N_TYPE(task_node) = task_type_name;
newscope(task_type_name); /* introduce new scope */
#ifdef TBSN
prefix := prefix + id + '.'; $ For unique names.
#endif
sem_list(entries_node);
#ifdef TBSN
/* ignore opt_specs_node for now, as N_AST3 used for N_TYPE
* DS 9-22-86
*/
sem_list(opt_specs_node);
#endif
entry_list = DECLARED(scope_name);
popscope();
if (anon) {
/* Attach entry declarations for task object as well, and emit a
* declaration for the task object itself.
*/
SIGNATURE(t_name) = (Tuple) 0;
DECLARED(t_name) = entry_list;
FORDECLARED(id, entry_sym, entry_list, fd1)
/*(for entry = entry_list(id))*/
SCOPE_OF(entry_sym) = t_name;
ENDFORDECLARED(fd1)
}
return;
}
void accept_statement(Node accept_node) /*;accept_statement*/
{
/* This procedure opens a new scope when an ACCEPT statement is seen.
* In the case of an overloaded entry name, it selects the one with
* the matching signature.
*/
int certain;
Symbol task_name, task_type, real_name, entry_name, ix_t;
Set entries;
Tuple formals;
Forset fs1;
Node id_node, indx, body_node;
Node formals_node;
int exists, nat;
char *id, *junk;
Fortup ft1;
if (cdebug2 > 3) TO_ERRFILE("AT PROC : accept_statement");
id_node = N_AST1(accept_node);
indx = N_AST2(accept_node);
formals_node = N_AST3(accept_node);
body_node = N_AST4(accept_node);
id = N_VAL(id_node);
formals = get_formals(formals_node, id);
/* Find the task in which the accept statement occurs. The accept
* may of course appear within a block or another accept statement.
*/
exists = FALSE;
FORTUP(task_name = (Symbol), open_scopes, ft1);
nat = NATURE(task_name);
if( nat != na_block && nat != na_entry && nat != na_entry_family) {
exists = TRUE;
break;
}
ENDFORTUP(ft1);
certain = exists;
task_type = TYPE_OF(task_name);
if (task_type == (Symbol)0 || NATURE(task_type) != na_task_type) {
errmsg("Accept statements can only appear in tasks","9.5", accept_node);
/* following junk line in SETL not needed here ds 1 nov 84
* entry_name = id;
*/
return;
}
real_name = entry_name = dcl_get(DECLARED(task_name), id);
if (entry_name == (Symbol)0) {
errmsg("Undefined entry name in ACCEPT ", "9.5", id_node);
#ifdef TBSL
-- entry_name is symbol, id is string ds 2-jan-85
entry_name = id; /* For dummy scope. */
#endif
return; /* to Initialize it . */
}
else if (NATURE(entry_name) == na_entry) {
/* Collect all its overloadings and select the one with the
* correct signature.
*/
entries = OVERLOADS(entry_name);
if (indx != OPT_NODE) {
errmsg("invalid index on entry (not entry family)", "9.5", indx);
}
exists = FALSE;
FORSET(entry_name = (Symbol), entries, fs1);
if (same_sig_spec(entry_name, formals)) {
exists = TRUE;
break;
}
ENDFORSET(fs1);
if (!exists) {
errmsg("Entry name in ACCEPT statement does not match any entry" ,
"9.5", id_node);
return;
}
}
else if (NATURE(entry_name) == na_entry_family) {
ix_t = (Symbol) index_type(TYPE_OF(entry_name));
if (indx == OPT_NODE) {
errmsg("Missing index for entry family.", "9.5", accept_node);
}
else {
adasem(indx);
check_type(ix_t, indx);
}
}
else {
errmsg("Invalid entry name in ACCEPT", "9.5", id_node);
return;
}
N_UNQ(id_node) = entry_name;
TO_XREF(entry_name);
reprocess_formals(entry_name, formals_node);
if (in_open_scopes(entry_name )) {
errmsg_l("An accept_statement cannot appear within an ACCEPT for",
" the same entry", "9.5", accept_node);
}
newscope(entry_name);
has_return_stk = tup_with(has_return_stk, (char *)FALSE);
adasem(body_node);
junk = tup_frome(has_return_stk);
popscope();
}
void entry_decl(Node entry_node) /*;entry_decl*/
{
/* An entry declaration is treated like a procedure specification.
* An anonymous type is created for the entry object. This type is
* used by the interpreter to build the environment of an entry.
*/
Symbol entry_sym, entry_type;
Node id_node, formal_list;
Tuple formals;
if (cdebug2 > 3) TO_ERRFILE("AT PROC : entry_decl");
id_node = N_AST1(entry_node);
formal_list = N_AST2(entry_node);
formals = get_formals(formal_list, N_VAL(id_node));
check_out_parameters(formals);
/*entry = chain_overloads(N_VAL(id_node), [na_entry, 'none', formals]); */
entry_sym = chain_overloads(N_VAL(id_node), na_entry, symbol_none,
formals, (Symbol)0, formal_list);
entry_type = anonymous_type();
/*SYMBTAB(entry_type) := [na_entry_former, scope_name, signature(entry)]; */
NATURE(entry_type) = na_entry_former;
TYPE_OF(entry_type) = scope_name;
SIGNATURE(entry_type) = SIGNATURE(entry_sym);
root_type(entry_type) = entry_type;
N_UNQ(id_node) = entry_sym;
N_TYPE(entry_node) = entry_type;
}
void entry_family_decl(Node entry_node) /*;entry_family_decl*/
{
/* An entry family is not an overloadable object. It is constructed
* as an array of entries. An anonymous type is introduced for the entry
* former, just as for an entry declaration, and another is introduced
* for the array representing the family.
*/
Symbol entry_sym, entry_type, family_type;
Symbol opt_range;
Tuple formals, f, tup;
Node id_node, discrete_range, formal_list;
if (cdebug2 > 3) TO_ERRFILE("AT PROC : entry_family_decl");
id_node = N_AST1(entry_node);
discrete_range = N_AST2(entry_node);
formal_list = N_AST3(entry_node);
entry_sym = find_new(N_VAL(id_node));
formals = get_formals(formal_list, N_VAL(id_node));
check_out_parameters(formals);
f = process_formals(entry_sym, formals, TRUE);
entry_type = anonymous_type();
NATURE(entry_type) = na_entry_former;
TYPE_OF(entry_type) = scope_name;
SIGNATURE(entry_type) = f;
root_type(entry_type) = entry_type;
adasem(discrete_range);
opt_range = make_index(discrete_range);
family_type = anonymous_type();
/* SYMBTAB(family_type) =
* [na_array, family_type, [[opt_range], entry_type]];
*/
NATURE(family_type) = na_array;
TYPE_OF(family_type) = family_type;
tup = tup_new(2);
tup[1] = (char *) tup_new1((char *) opt_range);
tup[2] = (char *) entry_type;
SIGNATURE(family_type) = (Tuple) tup;
root_type(family_type) = family_type;
/* SYMBTAB(entry) = [na_entry_family, family_type, f]; */
NATURE(entry_sym) = na_entry_family;
TYPE_OF(entry_sym) = family_type;
SIGNATURE(entry_sym) = f;
formal_decl_tree(entry_sym) = (Symbol) formal_list;
N_UNQ(id_node) = entry_sym;
N_TYPE(entry_node) = family_type;
}
void entry_call(Node node) /*;entry_call*/
{
/* process an entry call. obj_node below is the entry name: either a se-
* lected or an indexed expression.
*/
Symbol range_typ, entry_sym;
Node obj_node, arg_list_node;
Tuple arg_list;
Node task_node, index_node, entry_node;
if (cdebug2 > 3) TO_ERRFILE("AT PROC : entry_call");
obj_node = N_AST1(node);
arg_list_node = N_AST2(node);
arg_list = N_LIST(arg_list_node);
find_entry_name(obj_node); /* Normalize entry name*/
task_node = N_AST1(obj_node);
entry_node = N_AST2(obj_node);
if (entry_node == OPT_NODE) return; /* previous error. */
if (N_KIND(obj_node) == as_entry_family_name) {
entry_sym = N_UNQ(entry_node);
range_typ = (Symbol) index_type(TYPE_OF(entry_sym));
index_node = N_AST3(obj_node);
if (index_node == OPT_NODE) {
/* Case of a call to a parameterless family. The formals list
* is actually the index expression. Verify its size.
*/
if (tup_size(arg_list) != 1) {
errmsg("Call to member of entry family requires one index",
"9.5, 3.6.1", obj_node);
return;
}
else {
index_node = (Node) arg_list[1];
N_AST3(obj_node) = index_node;
arg_list_node = node_new(as_list);
N_LIST(arg_list_node) = tup_new(0);
N_AST2(node) = arg_list_node;
}
}
check_type(range_typ, index_node);
/* process as usual call.*/
N_NAMES(obj_node) = set_new1((char *) entry_sym);
check_type(TYPE_OF(entry_sym), node);
N_AST3(obj_node) = index_node; /* restore index */
N_KIND(obj_node) = as_entry_name; /* common processing after this */
}
else { /* Simple entry.*/
check_type(symbol_none, node); /* as for a procedure call */
entry_sym = N_UNQ(entry_node);
N_AST3(obj_node) = OPT_NODE; /* discard N_NAMES */
}
/* Having resolved the call, use the unique entry name to complete the
* resolution of the task name itself.
*/
if (entry_sym != (Symbol)0)
complete_task_name(task_node, TYPE_OF(SCOPE_OF(entry_sym)));
return;
}
void check_entry_call(Node stat_node) /*;check_entry_call*/
{
/* Verify that the call in a timed entry call or a conditional entry call
* is indeed a call to an entry, and not to a procedure.
*/
adasem(stat_node);
if (N_KIND(stat_node) == as_call) {
errmsg("context requires entry name ", "9.7.2, 7.3", stat_node);
}
}
void find_entry_name(Node obj_node) /*;find_entry_name*/
{
/* Find the name of an entry or entry family, given by a qualified and
* (in the case of a family) indexed expression. This differs from other
* cases of name resolution in that the name of the task containing the
* entry can be given by an expression that must also be resolved.
* This procedure is also called to validate the argument of the COUNT
* attribute; this attribute can only be used within the task body, in
* which the entry need not be named as a selected component. An entry
* name will then be seen as an overloaded identifier. The task name is
* the scope of the entry.
* An entry family name is built as a triple [task_node, entry_node, index]
* An entry name is built as a pair [task_node, entry_name]. In addition,
* the N_NAMES field is defined in the case of entries, which can be over-
* loaded.
*/
Node index_list_node, task_node, entry_node, index_node;
Tuple index_list;
Symbol obj, task_name, t, e, sym;
Set entries, task_types, entry_names;
Forset fs1, fs2;
char *entry_id;
int exists, is_family;
if (cdebug2 > 3 ) TO_ERRFILE("AT PROC : find_entry_name");
if (N_KIND(obj_node) == as_simple_name) {
if (N_OVERLOADED(obj_node) ) {
entries = N_NAMES(obj_node);
task_name = SCOPE_OF((Symbol)set_arb( entries));
if (!is_task_type(TYPE_OF(task_name))) {
errmsg("Invalid entry name", "9.5", obj_node);
entry_node = OPT_NODE;
}
else {
entry_node = copy_node(obj_node);
}
task_node = node_new(as_simple_name);
N_UNQ(task_node) = task_name;
N_VAL(task_node) = (char *) original_name(task_name);
copy_span(obj_node, task_node);
index_node = OPT_NODE;
}
else if (NATURE((obj = N_UNQ(obj_node))) == na_entry_family) {
/* Member of entry family, with index missing. */
errmsg("Missing index in name of member of entry family",
"9.5", obj_node);
entry_node = OPT_NODE;
}
}
else if (N_KIND(obj_node) == as_selector) { /* selected_component*/
task_node = N_AST1(obj_node);
entry_node = N_AST2(obj_node);
index_node = OPT_NODE;
}
else { /* case of entry family. */
entry_node = N_AST1(obj_node);
index_list_node = N_AST2(obj_node);
if (N_KIND(entry_node) == as_simple_name) {
/* Entry family named in task body. Get enclosing task name.*/
task_node = node_new(as_simple_name);
task_name = SCOPE_OF(N_UNQ(entry_node));
N_UNQ(task_node) = task_name;
N_VAL(task_node) = (char *) original_name(task_name);
copy_span(obj_node, task_node);
}
else {/* Name is selected component. */
task_node = N_AST1(entry_node);
entry_node = N_AST2(entry_node);
}
index_list = N_LIST(index_list_node);
if (tup_size(index_list) != 1) {
errmsg("Member of entry family requires a single index ",
"9.5, 3.6.1", obj_node);
entry_node = OPT_NODE;
}
index_node = (Node) index_list[1];/* In any case. */
}
if (entry_node != OPT_NODE) { /* no previous error*/
valid_task_name(task_node);
task_types = N_PTYPES(task_node);
if (set_size(task_types) == 0) /* prefix is not a task*/
entry_node = OPT_NODE;
}
else {
task_node = OPT_NODE;
task_types = set_new(0);
}
entry_names = set_new(0);
entry_id = (char *) N_VAL(entry_node);
is_family = FALSE;
FORSET(t = (Symbol), task_types, fs1);
if (is_access(t)) t = (Symbol) designated_type(t);
e = dcl_get(DECLARED(t), entry_id);
if (e != (Symbol)0) {
if (NATURE(e) == na_entry) {
FORSET(sym = (Symbol), OVERLOADS(e), fs2);
entry_names = set_with(entry_names, (char *) sym);
ENDFORSET(fs2);
}
else { /* name of entry family*/
entry_names = set_with(entry_names, (char *) e);
is_family = TRUE;
}
}
ENDFORSET(fs1);
if (set_size(entry_names) == 0 && entry_node != OPT_NODE ) {
errmsg("Undefined entry name in task : ", "9.5", obj_node);
entry_node = OPT_NODE;
}
else {
exists = FALSE;
if (set_size(entry_names) > 1 ) {
exists = FALSE;
FORSET(e = (Symbol), entry_names, fs2);
if (NATURE(e) == na_entry_family ) {
exists = TRUE;
break;
}
ENDFORSET(fs2);
}
if (exists) {
errmsg_id("ambiguous entry family name: %", e , "9.5", obj_node);
/* entry is undefined, this is a guess (gs sep 20) */
entry_node = OPT_NODE;
}
else if (entry_node != OPT_NODE) {
if (is_family) {
N_KIND(obj_node) = as_entry_family_name;
N_UNQ(entry_node) = (Symbol)set_arb(entry_names);
N_AST3(obj_node) = index_node;
}
else {
N_KIND(obj_node) = as_entry_name;
N_NAMES(obj_node) = entry_names;
if (index_node != OPT_NODE ) {
errmsg_id("invalid index. % is not an entry family",
(Symbol) set_arb(entry_names), "9.5", obj_node);
}
}
}
}
N_AST1(obj_node) = task_node;
N_AST2(obj_node) = entry_node;
}
void terminate_statement(Node node) /*;terminate_statement*/
{
/* A terminate alternative is annotated with the nesting level of the
* statement, to simplify the retrieval of the task environment.
*/
int certain, exists, i, out_depth, j, blktyp;
Fortup ft1;
Symbol scope;
exists = TRUE;
FORTUPI(scope = (Symbol), open_scopes, i, ft1);
if (NATURE(scope) == na_task_obj || NATURE(scope) == na_task_type) {
exists = TRUE;
break;
}
ENDFORTUP(ft1);
certain = exists;
if (!certain) {
errmsg("Invalid context for TERMINATE alternative", "9.7.1", node);
i = 1;
}
/* Loops and handlers are scopes for syntactic purposes, but not at run-
* time. Remove them from depth count.
*/
out_depth = i - 1;
for (j = i; j > 0; j--) {
scope = (Symbol) open_scopes[j];
blktyp = (int) OVERLOADS(scope);
if (blktyp == BLOCK_LOOP || blktyp == BLOCK_HANDLER)
out_depth -= 1;
}
N_VAL(node) = (char *) out_depth;
}
void abort_statement(Node node) /*;abort_statement*/
{
Node name_node;
Fortup ft1;
Symbol task_obj;
Set task_types;
Symbol t;
if (cdebug2 > 3)
TO_ERRFILE("AT PROC : abort_statement");
FORTUP(name_node = (Node), N_LIST(node), ft1);
adasem(name_node);
find_old(name_node);
valid_task_name(name_node);
task_types = N_PTYPES(name_node);
if (set_size(task_types) == 0) /* Previous error*/
continue;
else if (!is_task_type( (t = (Symbol)set_arb (task_types), t) ) ) {
/* Access type not valid here.*/
errmsg(" expect task name is ABORT statement", "9.10", name_node);
continue;
}
else
resolve2(name_node, t);
if (N_KIND(name_node) == as_simple_name
&& NATURE(task_obj = N_UNQ(name_node)) == na_task_type ) {
/* This is a reference to the task currently executing the body.
* replace the name of the task type by its run-time identity.
*/
if (in_open_scopes(task_obj))
N_UNQ(name_node) = dcl_get(DECLARED(task_obj), "current_task");
else {
errmsg("Invalid task type in ABORT statement", "9.10",
name_node);
}
}
ENDFORTUP(ft1);
}